Cardiac fibroblast glycogen synthase kinase-3β regulates ventricular remodeling and dysfunction in ischemic heart.
نویسندگان
چکیده
BACKGROUND Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. After myocardial infarction, activated cardiac fibroblasts deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate, and new molecular targets are needed. METHODS AND RESULTS Herein we report that glycogen synthase kinase-3β (GSK-3β) is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using 2 fibroblast-specific GSK-3β knockout mouse models, we show that deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction, and excessive scarring in the ischemic heart. Deletion of GSK-3β induces a profibrotic myofibroblast phenotype in isolated cardiac fibroblasts, in post-myocardial infarction hearts, and in mouse embryonic fibroblasts deleted for GSK-3β. Mechanistically, GSK-3β inhibits profibrotic transforming growth factor-β1/SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3β resulted in the significant increase of SMAD-3 transcriptional activity. This pathway is central to the pathology because a small-molecule inhibitor of SMAD-3 largely prevented fibrosis and limited left ventricular remodeling. CONCLUSIONS These studies support targeting GSK-3β in myocardial fibrotic disorders and establish critical roles of cardiac fibroblasts in remodeling and ventricular dysfunction.
منابع مشابه
Cardiac Fibroblast GSK-3 Regulates Ventricular Remodeling and Dysfunction in Ischemic Heart
متن کامل
The GSK-3 family as therapeutic target for myocardial diseases.
Glycogen synthase kinase-3 (GSK-3) is one of the few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in several diseases including heart failure, bipolar disorder, diabetes mellitus, Alzheimer disease, aging, inflammation, and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting ...
متن کاملGlycogen synthase kinase-3α limits ischemic injury, cardiac rupture, post-myocardial infarction remodeling and death.
BACKGROUND The molecular pathways that regulate the extent of ischemic injury and post-myocardial infarction (MI) remodeling are not well understood. We recently demonstrated that glycogen synthase kinase-3α (GSK-3α) is critical to the heart's response to pressure overload. However, the role, if any, of GSK-3α in regulating ischemic injury and its consequences is not known. METHODS AND RESULT...
متن کاملMyocardial injection with GSK-3β-overexpressing bone marrow-derived mesenchymal stem cells attenuates cardiac dysfunction after myocardial infarction.
RATIONALE Glycogen synthase kinase (GSK)-3β upregulates cardiac genes in bone marrow-derived mesenchymal stem cells (MSCs) in vitro. Ex vivo modification of signaling mechanisms in MSCs may improve the efficiency of cardiac cell-based therapy (CBT). OBJECTIVE To test the effect of GSK-3β on the efficiency of CBT with MSCs after myocardial infarction (MI). METHODS AND RESULTS MSCs overexpres...
متن کاملThe antioxidant compound tert-butylhydroquinone activates Akt in myocardium, suppresses apoptosis and ameliorates pressure overload-induced cardiac dysfunction
Tert-butylhydroquinone (TBHQ) is an antioxidant compound which shows multiple cytoprotective actions. We evaluated the effects of TBHQ on pathological cardiac remodeling and dysfunction induced by chronic overload. Pressure overload was created by transverse aortic constriction (TAC) in male C57BL/6 mice. TBHQ was incorporated in the diet and administered for 4 weeks. TBHQ treatment prevented l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 130 5 شماره
صفحات -
تاریخ انتشار 2014